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Abstract—Branch prediction (i.e., the generation of fetch
addresses) and instruction cache accesses need not be tightly
coupled. As the instruction fetch stage stalls because of an I-
Cache miss or back-pressure, the branch predictor may run
ahead and generate future fetch addresses that can be used
for different optimizations, such as instruction prefetching
but more importantly hiding taken branch fetch bubbles.
This approach is used in many commercially available high-
performance design.

However, decoupling branch prediction from instruction
retrieval has several drawbacks. First, it can increase the
pipeline depth, leading to more expensive pipeline flushes.
Second, it requires a large Branch Target Buffer (BTB) to
store branch targets, allowing the branch predictor to follow
taken branches without decoding instruction bytes. Missing
the BTB will also cause additional bubbles. In some classes of
workloads, those drawbacks may significantly offset the benefits
of decoupling.

In this paper, we present ELastic Fetching (ELF), a hybrid
mechanism that decouples branch prediction from instruction
retrieval while minimizing additional bubbles on pipeline
flushes and BTB misses. We present two different implemen-
tations that trade off complexity for additional performance.
Both variants outperform a baseline decoupled fetcher design
by up to 3.7% and 5.2%, respectively.

I. INTRODUCTION

Many high-performance general purpose processors de-

couple the branch prediction logic (a.k.a, the instruction

sequencing logic) from the actual instruction retrieval from

the instruction cache [1], [2], [3], [4]. Specifically, with the

aid of a dedicated structure containing branch information

such as a Branch Target Buffer (BTB), the branch prediction

infrastructure generates fetch addresses and queues them in a

decoupling queue. The fetcher can then consume those fetch

addresses as fast as allowed by the instruction cache behavior.

Decoupling has well-known benefits [5]. For instance, the

decoupling queue can act as a very accurate instruction

prefetcher: If an instruction cache miss takes place, the

decoupling queue will get filled since branch prediction can

run ahead. When this happens, prefetch addresses can be

picked from the decoupling queue. Another, potentially more

critical example, is that some implementations may suffer

from a taken branch penalty, i.e., one or more bubbles inserted

every time a branch is predicted taken in the fetch unit, even

in the presence of a BTB.1 Through decoupling, this bubble

1In high frequency designs, a single cycle may not be sufficient to access
a large BTB and branch predictor, process the BTB entry content, map the
branch predictions to the BTB entry, and finally compute the next PC.

can be hidden as long as branch prediction is able to run ahead

of the fetch unit. Nonetheless, decoupling branch prediction

from instruction data retrieval has its own drawbacks. First,

it requires the presence of a large BTB-like [6] structure

to allow branch prediction to follow taken branches. Note

that for decoupled fetching to increase performance through

instruction prefetching, the BTB reach has to be greater than

the I-Cache reach, which demands a larger BTB. Second,

it mechanically increases the pipeline depth, such that a

given fetch PC has to go through branch prediction first, then

through instruction cache access. In a coupled design, both

happen in parallel. This implies that the branch misprediction

penalty is generally higher. Moreover, this increased pipeline

depth also appears on the critical path on BTB misses, as

the decode (or later) stage has to resteer the branch predictor

once the relevant branch target is decoded/computed. In this

paper, we propose ELastic Fetching (ELF), a mechanism

that decouples branch prediction and instruction retrieval in

steady state (referred to as Decoupled mode), but couples

them after a pipeline flush to hide the additional latency

introduced by decoupling (referred to as Coupled mode).

We detail two possible implementations. The first, Limited

ELastic Fetching (L-ELF), has low hardware overhead and

yields modest IPC improvement – up to 3.7% – in relevant

workloads. The second, Unlimited ELastic Fetching (U-ELF),

may have higher implementation overheads depending on

design choices left to the architect, but yields more substantial

IPC improvement – up to 5.2% – in relevant workloads.

II. RELATED WORK

The Branch Target Buffer (BTB) was initially disclosed

by Losq [6], and was further described by Lee and Smith

[7]. Interestingly, the BTB was initially envisioned as a

way to reduce the cost of taken branches by pulling the

prediction and target of a branch from the BTB in parallel

with instruction fetch. If the branch was predicted taken,

instructions at the target of the branch could be fetched

in the following cycle, rather than having to wait for the

instruction word to be decoded. However, the modern-day

BTB typically stores – direct – branch targets and metadata

while but conditional prediction is left to a dedicated predictor

[8].

Reinman et al. [9], [5] first proposed decoupling fetch

address generation from instruction retrieval by using the

BTB and a decoupling queue to queue fetch addresses
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Figure 1: Decoupled fetcher pipeline consists of: decoupled fetch stages (BP1, BP2, and FAQ), and regular (non-decoupled)

stages (Fetch, and Decode). One stage corresponds to one cycle.

during I-Cache misses or other long latency events. Through

decoupling, very accurate instruction prefetching can be

performed, and if the decoupling queue occupancy is high

enough, taken branch bubbles can be squashed.

Predating Reinman et al., Stark et al. [10] similarly

proposed to use the BTB to generate fetch addresses ahead of

the instruction stream in case of an I-Cache miss. However,

the proposed design aimed at actually fetching instructions

past the I-Cache miss (i.e., out-of-order fetching) in a coupled

fashion, rather than truly decoupling branch prediction from

instruction fetch. As a result, this scheme was not able

to squash taken branch bubbles, although it did perform

instruction prefetching.

More recently, Kumar et al. described Boomerang [11], a

technique that attempts to mitigate BTB misses by probing

the I-Cache and decoding targets from the cache data directly,

before they are needed. Indeed, many server workloads

feature a gigantic instruction footprint that cannot fit entirely

in the BTB, causing many branch prediction cycles to be

wasted waiting for the decoded target. With Boomerang, the

BTB miss is resolved as soon as possible, and its latency

hidden if enough fetch addresses are en-route to the fetcher.

III. DECOUPLED FETCHER OVERVIEW

Decoupling branch prediction from instruction retrieval has

one stringent requirement: the branch predictor has to be able

to follow branches it predicts taken without accessing the

instruction cache. As a result, a BTB is usually implemented

side-by-side with the branch predictor. The BTB may be

branch-target indexed and contains branch information as well

as branch target(s) when relevant (i.e., for direct branches)

for a given number of instructions. A single BTB entry tracks

a finite number of branches, as well as a maximum number

of instructions, or instruction bytes.

A. BTB Entry

Entry Content. In our framework, and as in AMD Zen, an

entry in the BTB can track up to 16 sequential instructions,

2 of them being ”observed taken before” branches [8]. That

is, a conditional branch that was never observed taken will

not occupy any of the two branch slots.

Entry Establishment. While it is possible to populate the

BTB speculatively after instruction decode, we establish BTB

entries non-speculatively as instructions retire. This limits

complexity as entries being constructed never need to be –

partially – flushed.

A new BTB entry being established ends when either:

1) An unconditional branch is encountered, 2) A third

taken conditional is encountered, or 3) The entry spans

16 sequential instructions. In addition, an existing BTB

entry may have to be amended if a ”never observed taken”

conditional branch becomes taken. This may cause an entry to

be split into two to accommodate the fact that a single entry

can track at most two ”observed taken before” branches.

B. Frontend Operation

Figure 1 depicts the pipelined organization of the decou-

pled fetching (DCF) infrastructure we consider in this paper.

1) Coupled: Only the two rightmost stages in the Figure

are used. During Fetch, the I-Cache and predictors are

accessed using the fetch PC to retrieve N instruction words

as well as N branch predictions. In this paper, we assume the

presence of a smaller L0 I-Cache that is able to present data

at the output in a single cycle. It is backed-up by a bigger L1

I-Cache that has multi-cycle latency, following Qualcomm’s

Centriq frontend design [12]. Therefore, assuming the pres-

ence of pre-decode bits (e.g., branch location) in the L0

I-Cache, predictions are attributed to branch instructions in

parallel with Decode, causing a bubble to be inserted on a

predicted taken branch. Various techniques exist to mitigate
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sequential addresses generated speculatively while waiting

for a prediction or a correction.

this bubble such as using a BTB [7] or a Next Line Predictor

[13].

2) Decoupled: Each cycle, in the ”Branch Prediction 1”

(BP1) stage, the L0 and L1 BTB are accessed with the

current ”BPred PC”. In parallel, the branch predictor is

accessed in order to retrieve N branch predictions, where

N is the maximum number of conditional branches tracked

per BTB entry (2 in this paper). Depending on the BTB

entry branch information and the branch predictions, the next

”BPred PC” is either the target of one of the N conditional

branches, the target of an indirect branch if the BTB entry

tracks one, the target of an unconditional direct branch if

the BTB entry tracks one, or the fall-through of the BTB

entry. Depending on the access time of the branch predictor,

BTB and indirect target predictor, one or more bubbles may

be inserted between the generation of two BPred PCs. In

this paper, we assume one cycle for the processing of the

content of the L1 BTB entry: ”Branch Prediction 2” (BP2)

stage. However, we are able to speculatively access the L0

and L1 BTB with the proxy fallthrough address (PC + 16

instructions) of the previous block each cycle. Consequently,

a bubble is inserted if: 1) L1 BTB reports a taken branch

in BP2 2) The L1 BTB entry does not track the maximum

amount of sequential instructions (16 in this paper), causing

the proxy fallthrough address to be incorrect despite the

absence of a taken branch.2

2This may happen if an entry tracks e.g. 10 instructions, including two
observed taken before branches. Assuming the last instruction is a tracked
branch and its fallthrough is a third branch that has been taken before, the
third branch cannot be given a slot in the BTB entry and will reside in a
distinct entry. However, the speculative fallthrough access at PC + 16 insts.
will be incorrect since the actual fallthrough is PC + 10 insts.

BP1 BP2 FAQ FE DEC ... ... ... EXE... WB

No DCF min. branch mispred

DCF min. branch mispred

RET

Figure 3: Minimum branch misprediction penalty in the

presence of a decoupled fetcher infrastructure.

Moreover, if the L0 BTB hits, we are able to generate

the next BPred address during the same cycle, using branch

predictions from the bimodal component of TAGE [14]. As

a result, even on a predicted taken branch, an L0 BTB hit

prevents any bubble from being inserted in BP1. Note that

if the tagged components of the TAGE predictor disagree

with the bimodal, the prediction is overridden in BP2 and a

bubble is inserted, as in the L1 BTB hit case.

In most ISAs, including ARMv8 that we use in this paper,

indirect branches are unconditional. That is, the indirect

branch predictor can be queried with the BPred PC for a

single prediction since there will at most be one indirect

branch per BTB entry: Such branch terminates the BTB

entry. Therefore, indirect branches may not incur additional

bubbles versus direct and conditional branches. In this paper,

however, we implement a 2-level indirect target predictor that

has variable latency: a hit in the L0 predictor or the Return

Address Stack will cause a single bubble to be added (as

with direct taken branches), but a miss in the L0 predictor

will cause three bubbles to be added.

Figure 2 summarizes several examples of address genera-

tion timing depending on the BTB content, and also gives

timing for the coupled organization as a reference.

Generated fetch addresses, along with the number of

sequential instructions at each address, are enqueued in

the ”Fetch Address Queue” (FAQ) stage. Fetch addresses

are consumed by the fetch unit as instruction words are

retrieved from the L0 instruction cache in ”Fetch” (FE).

In the event that the BTB information is stale (e.g., cold

miss, self-modifying code), the ”Decode” (DEC) stage is in

charge of re-steering the earlier stages (BP1/BP2/FAQ/FE).

For instance, if it determines that the decoded target of

a direct branch differs from the one stored in the BTB.

Similarly, and as in a Coupled pipeline, the back-end will

re-steer the whole front-end on branch and indirect target

mispredictions as well as other pipeline flushing events.

C. BTB Misses

Until now, we placed ourselves in the context of BTB hits.

However, since the BTB is a finite-size structure, it is possible

that a ”BPred PC” will miss the BTB. In that case, the

decoupled fetcher (DCF) is essentially unable to determine

what the next ”BPred PC” is since it cannot tell whether

there are branches and what their targets are. In that context,

DCF can simply queue sequential fetch addresses (i.e., BPred

PC + max instructions per BTB entry) in the decoupling

3



queue, although a misfetch is highly likely to occur since

most BTB entries are terminated by taken branches.

As illustrated in Figure 2, it is usually possible to recover

from a BTB miss earlier than from a branch misprediction.

As soon as the decode stage detects a direct unconditional

branch, it can resteer the frontend using the target contained

in the instruction word. Similarly, this can take place for

conditional branches if the branch predictor predicted taken

for that branch, or for returns by explicitly stalling while the

Return Address Stack (RAS) of the DCF is accessed (not

shown in the figure). Indirect branches other than returns,

however, must either wait for their target to be resolved

at execution time or use the indirect target prediction to

resteer the front-end. As a result, using a decoupled fetcher

introduces another feedback loop that spans from the first

branch prediction stage to the decode stage. This loop can

be observed on the critical path every time the BTB misses,

and its impact on performance will grow as the number of

cycles between BP1 and Decode increases [15].

D. Other Pipeline Flushes

Pipeline flushes due to branch mispredictions or RAW

hazards between a load and a store resteer the front-end.

However, they also expose the additional latency introduced

by the branch prediction stages, as illustrated in Figure 3.

Overall, compared to a Coupled pipeline, DCF will incur

additional penalty on all pipeline flushes as well as all BTB

misses.

IV. ELASTIC FETCHING (ELF)

The benefits of DCF can be belittled for workloads that

often expose the additional pipeline depth introduced by DCF

(due to frequent branch mispredictions, BTB misses ...etc.)

[5]. This effect is likely to be exacerbated for workloads that

do not benefit significantly from DCF in the first place, e.g.,

because they have a small instruction footprint that fits in the

I-Cache and they are not sensitive to taken branch bubbles.

As we will show in Section VI, in such cases, DCF is in

fact detrimental to performance.

When considering only the instruction prefetch aspect

of DCF, one might argue that implementing a dedicated

instruction prefetcher can be superior to implementing DCF.

However, DCF is orthogonal to other instruction prefetching

schemes. Moreover, it also permits other optimizations such

as hiding the taken branch penalty that may exist even in BTB-

based designs as well as fetching across a taken branch in a

single cycle. It is therefore broader in scope than instruction

prefetching, which likely explains why it is widely used in

commercial processors from AMD, Samsung, IBM and ARM

[1], [2], [3], [4]. Therefore, hiding the additional latency (i.e.,

increase in pipeline depth), incurred by DCF on pipeline

flushes, is of great value to modern frontend implementations.

A. Introducing ELF

To address the potential drawbacks of DCF, we introduce

ELastic Fetching (ELF). The main idea behind ELF is that

once a pipeline flush occurs (or once a BTB miss is resolved),

the correct next PC is known. Consequently, we propose to

probe the I-Cache immediately using this fetch PC while the

decoupled fetching engine is restarting from BP1. This short-

circuits the branch prediction stages and reduces the pipeline

flush penalty. We note that this idea was first suggested

by Reinman [9] and assumed to be a given, hence, no

implementation was detailed and its impact on performance

was not studied. This paper claims that this assumption may

have been optimistic.

Allowing branch prediction and fetch to process the same

PC concurrently is not a straightforward change as the

processor now has two fetch address generation engines

that are desynchronized. As a result, we have to provide

a mechanism to resynchronize the fetcher with branch

prediction when the latter catches up. Specifically, we

introduce two modes for the fetcher.

Coupled Mode: In this mode, PC generation is done by

the fetcher itself, as if the fetcher is not decoupled. This mode

is the transient state, i.e., the processor should only spend

a small fraction of cycles in this mode. Coupled mode is

entered after a pipeline flush, or after a BTB miss is resolved

in the Decode stage.

Decoupled Mode: In this mode, PC generation is

performed by the decoupled fetcher with the help of the

BTB. This is the steady state, and it is entered when the

decoupled fetcher catches up to the fetcher that is currently

running in coupled mode.

In the remainder of this paper, we use ”coupled” and

”decoupled” to either describe a dynamic resource (e.g., a

coupled instruction is an instruction fetched in coupled mode),

or a static resource (e.g., a coupled predictor is a structure that

belongs to the fetcher, while a decoupled predictor belongs

to the DCF).

B. Implementation #1: Limited ELF (L-ELF)

The fetcher will only fetch sequential instructions when in

coupled mode. As soon as a control flow decision needs to

be made, it will stall. Note that in this context, following an

unconditional direct branch is not a control-flow decision,

i.e., L-ELF can fetch past unconditional direct branches.

This implementation, which is similar in spirit to Reinman

[9], is clearly the simplest one from the fetcher’s point of

view, as it does not require branch prediction capability. Only

a mechanism to resynchronize with the decoupled fetcher is

necessary. However, if the number of instructions fetched in

this mode is small, i.e., indirect/conditional branch density

is high, then part of the additional latency exposed during

pipeline flushes and BTB misses may not be hidden.
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1) Resynchronizing DCF and the Fetcher: In this first

implementation, switching from coupled mode to decoupled

mode once the DCF has caught up is straightforward. Indeed,

instructions fetched in coupled mode are guaranteed to be

a subset of the FAQ blocks that the DCF will eventually

generate. Consequently, the fetcher simply has to keep a

count of instructions fetched in coupled mode, and compare

this count to the count in FAQ blocks.

Every time an FAQ block becomes available for consump-

tion, the fetcher will compare its current count of instructions

fetched (in coupled mode) to the number of instructions that

would already have been fetched (in decoupled mode) plus

the size of the FAQ block. Three scenarios are possible:

1) The counts are equal: The fetcher has already fetched

all the instructions from the FAQ blocks and said block

can simply be popped. Decoupled mode can start from

the next FAQ block. Alternatively, coupled mode can

continue until one of 2.b) or 3) is met.

2) The coupled count is greater than the decoupled count.

Either:

a) DCF has not caught up, so no switching happens,

or

b) The fetcher overshot and fetched past a control-

flow decision as a result of blindly fetching fetch-

width instructions per cycle. This can easily be

detected by embedding the cause of termination

for each FAQ block. That is, if the cause is a taken

branch (as opposed to sequencing to the next

block), the coupled count cannot be greater than

the decoupled count in L-ELF.3 Upon detection,

decoupled mode can start from the next FAQ

block and Decode must be forced to throw away

the instructions that overshot (which the fetcher

would have done anyway in a non-decoupled

design).

3) The coupled count is lesser than the decoupled count.

Either DCF has caught up and/or the fetcher has

encountered a control-flow decision and is stalled.

The count in the newly generated FAQ block has to

be adjusted and decoupled mode can start from the

amended FAQ block.

When in coupled mode, each cycle the fetcher attempts

to switch to decoupled mode if there is an FAQ block to

be processed. That is, while the I-Cache access has started,

the coupled count is speculatively updated assuming fetch

width instructions will be fetched, and it is compared against

the decoupled count adjusted with the count contained in

the FAQ entry. This enables decoupled mode to start in

the following cycle while still having retrieved instructions

3The exception is self-modifying code where the coupled count could
legitimately be higher as the BTB information could be stale. We assume
that this case is already handled since any decoupled design must account
for the possibility of self-modifying code.

from the I-cache this cycle (unless the fetcher is stalled

on a control-flow decision, in which case bubble(s) will be

inserted).

Therefore, while very limited, L-ELF will be able to hide

part or all the additional latency incurred by DCF as long

as the fetcher is able to fetch a long enough sequence of

sequential instructions without running into a conditional or

indirect branch.

C. Implementation #2: Unlimited ELF (U-ELF)

The fetcher implements branch prediction structures to be

able to make control-flow decisions until the DCF catches

up.

1) Branch Prediction Infrastructure: Intuitively, since

most of the time is spent running in decoupled mode (steady

state), the DCF features a complex branch predictor as well

as a complex branch target predictor. Moreover, and for

the same reason, in coupled mode, the number of static

branches to track state for should be lower. Therefore, to

limit overhead, it seems reasonable to implement limited-

complexity predictors in the fetcher.

In addition, it is possible to only implement a specific

predictor type and to stop coupled fetching if a branch that

cannot be predicted is decoded. For instance, the fetcher

may only feature a direction predictor and no indirect branch

predictor (or only part of it such as the return address stack).

In this paper, we consider four predictor arrangements for

the fetcher:

1) RET-ELF: 32-entry Return Address Stack (RAS),

allowing to predict returns only.

2) IND-ELF: 64-entry direct-mapped Branch Target

Cache that predicts all indirect branch types (except

returns).

3) COND-ELF: 2K-entry bimodal predictor (3-bit coun-

ters), allowing to predict conditional branches.

4) U-ELF: All of the above.

We point out that these predictors are very simple, and

that except for the RAS, they do not require checkpointing

to restore state in case of a pipeline flush. The rationale for

limiting ourselves is that ELF is a microarchitectural feature

that targets specific classes of workloads, and as such, a

general purpose design may not have significant area to

spare to implement the coupled predictors. Nonetheless, there

is no fundamental limitation in ELF that prevents the architect

from implementing more complex prediction schemes.

Figure 4 gives an overview of a fetcher implementing full

U-ELF. Note that branch tracking information from DCF

is processed at Fetch since it is available from the FAQ,

while branch tracking information from the coupled fetcher

is processed after Decode since instructions must be decoded

for branch information to become available. Next, we discuss

the structures required to ensure correct operation.
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2) Divergence: Using different control-flow speculation

schemes in DCF and fetcher opens up the possibility of them

going down different paths. As a result, the hardware must

monitor both streams to be able to recover, preferably in a

timely fashion.

Bitvectors: Two finite-size bitvectors are implemented

in the fetcher, one tracks coupled stream and the other tracks

decoupled stream. Each entry in these bitvectors consists

of 3 bits: taken, branch, and valid. For taken, a 0 indicates

a non-taken branch or non-branch instruction, while a 1

indicates a taken branch instruction. The branch bit is set for

all branches. The valid bit, not shown in Figure 4, is used to

prevent unallocated entries from triggering a mismatch signal.

As a result, bitvectors (and target queues described below)

are not managed as circular buffers. Rather, each entry has a

sibling entry in the other bitvector/queue and comparison can

be done directly, with the mismatch signal guarded by the

valid bits. A circular buffer implementation is possible but

complicates the comparison logic as it requires multiplexing.

The vectors are only populated in coupled mode. The

first bitvector tracks decoded instructions and is therefore

populated after Decode. The second tracks instructions that

would have been fetched in decoupled mode, as recorded by

the FAQ, and is therefore populated at Fetch, when a FAQ

entry becomes available. The bitvectors are compared each

cycle and a difference between two sibling entries with the

valid bits set indicates divergence. At that point, we must

either trust the DCF and flush any instruction fetched in

coupled mode past the divergence point, or trust the fetcher

and flush the DCF.

In general, since the DCF has the complex branch

predictors, it would seem intuitive to trust the DCF over the

fetcher. However, for the case of branch direction validation,

there are exceptions where the fetch addresses generated by

the DCF must be flushed while fetching continues in coupled

mode:

1) On a BTB miss, any unconditional branch contained

in the block tracked by the BTB entry will not have

its target in the BTB. As a result, DCF will continue

generating sequential fetch addresses. However, the

fetcher will detect the unconditional branch in Decode,

which will ultimately lead to detecting a divergence

as DCF believes the stream is sequential, while the

fetcher knows that there is a taken branch.

2) On a BTB hit ending by a taken branch (of any type),

and in workloads featuring self-modifying code, it is

possible that the decoded instruction corresponding to

the taken branch is no longer a branch. This is detected

using the branch bit which is 0 in the coupled bitvector

and 1 in the decoupled bitvector.

Target Queues: Bitvectors as described above are not

sufficient to detect divergence in case of an indirect branch

being predicted differently by the fetcher and the DCF. Even

worse, not detecting this case can lead to switching back

to decoupled mode while the fetcher is on the correct path

but DCF is not. Thus, the bitvectors are backed-up by two

target queues and associated valid bits. As taken direct and

indirect branches are encountered in DCF (Fetch timeframe)

and the fetcher (Decode timeframe), the addresses are pushed

in the target queues. As for the bitvectors, the addresses are

compared each cycle and a difference between two entries

with the valid bits set indicates divergence.
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In the common case, we trust DCF when detecting

divergence and we flush coupled instructions fetched past the

divergence point. However, the following exception applies:

On a taken direct branch (conditional or unconditional), the

fetcher has the decoded target, which is the correct one. This

target might differ from the one recorded by the BTB in the

case of self-modifying code. If that is the case, then DCF is

flushed and fetching continues in coupled mode. This entails

that the Target Queues must also retain the type of the branch,

to be able to choose the correct ”winner” on a divergence.

Specifically, on a divergence for an indirect branch, DCF

wins, but on a divergence on a direct branch, the fetcher

wins.

Interestingly, this exception is not a consequence of U-ELF,

but of decoupled fetching itself. Indeed, since the BTB does

not have to honor cache invalidation idioms used for self-

modifying code (e.g., ARM64’s IC I*) because it does not

contain instruction words, this case may arise during regular

decoupled fetching. In other words, regular decoupled fetch-

ing already requires comparing the targets of direct branches.

U-ELF simply adds another requirement: comparing the

targets of indirect branches to detect divergence as well

as buffering to hold decoded/predicted targets to allow the

fetcher to run ahead.

3) Resynchronizing DCF and the Fetcher: As U-ELF

is allowed to speculate past control-flow decisions, the

precise coupled instruction count will only be known after

instructions have been decoded and the branches identified.

Therefore, a reasonable way to switch back to decoupled

mode would be to start using FAQ information as soon as

the DCF catches up with instruction decode. However, this

implies adding bubbles corresponding to the fetch-to-decode

latency when switching.

To avoid this penalty, we can use the two instruction

counts used in L-ELF to switch back to decoupled mode

as soon as possible, while precise divergence detection is

done at Decode. To that extent, we add a Decode Coupled

Count which, contrarily to the Fetch Coupled Count is non

speculative and is therefore used for validation purposes as

well as for ensuring that the current FAQ entry can be safely

popped without the risk of losing information.

Note that after a switch to decoupled mode, we still need to

track the few instructions that have been fetched (in coupled

mode) but not yet decoded to prevent divergence. This means

that we cannot reset the bitvectors and target queues upon

switching to decoupled mode, but rather, we need to wait

until all coupled instructions have passed through decode.

4) Resynchronization Example: Figure 5 describes a

simple scenario where the fetcher is resynchronized with the

DCF during cycle 1 even though some coupled instructions

are still flowing from Fetch to Decode at the end of cycle 1.

Cycle 0: In the first cycle, the Decode stage, which already

decoded 8 coupled instructions in the previous cycle, is

receiving 8 instructions but discovers that the fourth one is a

conditional branch that was predicted taken by the coupled

predictor. As a result, the decode coupled count will increase

to 12, and the Fetch stage will be resteered. Population of the

coupled bitvector and target queue is not shown for clarity.

Concurrently, the Fetch stage is initiating a read of 8

instructions for the I-Cache, which speculatively increases

the fetch coupled count by 8. Note that this access will be

squashed due to Decode having detected a taken branch. In

parallel, Fetch also processes the oldest FAQ entry, increasing

the decoupled count by the number of instructions tracked in

the FAQ. Similarly, populating the decoupled bitvector and

target queue is not shown for clarity.

In that case, the updated decode coupled count is

greater than or equal to the updated decoupled count,

meaning that the information of the FAQ entry is

not needed to drive the fetcher even if resynchronization

happens now. Therefore, the FAQ entry can be popped safely.

Cycle 1: In the second cycle, Decode ignores the

instructions flowing from Fetch as those instructions are the

fallthrough of the branch that was predicted taken during the

first cycle. Concurrently, the fetch coupled count is amended:

• It is decreased by 8 (the fetch width, FW in the Figure)

since the cache access initiated during the previous cycle

was squashed.

• It is decreased by 4 since during the previous cycle,

the fourth instruction processed by Decode was a taken

branch. That is, the cache access initiated two cycles

ago only yielded 4 instructions when 8 were expected.

• It is increased by 8 since a new cache access for 8

instructions is initiated.

In parallel, a new FAQ entry has become available.

Thus, the decoupled count is adjusted from 12 to 22,

meaning that the number of instructions covered by the

previous and current FAQ entries is now greater than

the instructions fetched (or expected to be as we just

initiated a cache access) in coupled mode. Therefore, we

can switch to decoupled mode immediately. We also need

to adjust the instruction count in the current FAQ entry

as some of the instructions it references are currently

being read from the I-Cache. We note that the adjustment

is a fixed quantity: fetch width times Fetch to Decode latency.

Cycle 2: In the third cycle, Decode received the last 8

coupled instructions from the I-Cache and the decode coupled

count is increased. In the Figure, the 8 instructions are

sequential, therefore, the decode coupled count lines up with

the fetch coupled count. This means that resynchronization

is done and the bitvectors and target queues can be reset.

Concurrently, Fetch initiates a cache access for only two

instructions as the FAQ is now driving the fetcher.
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Figure 5: Resynchronizing in U-ELF. The algorithm in Cycle 0 and 1 is executed each cycle during operation in Coupled

mode. The algorithm in Cycle 2 is executed during the next Fetch to Decode cycles after switching back to decoupled mode.

For clarity, bitvectors and target queues are omitted in this figure.

Note that if Decode had found an unconditionally taken

branch in any of the slots during cycle 2, then a misfetch

would have occurred and the DCF would have been flushed.

This misfetch would have been detected by observing that the

fetcher is in decoupled mode but the decode and fetch coupled

counts have not been reset, and they do not match although

all coupled instructions have been processed by Decode.

This is not possible unless the FAQ (and by extension BTB)

information is stale. Conversely, in the case of one of the

instructions being a conditional branch predicted taken by the

coupled predictor and not taken by the decoupled predictor,

the bitvectors would catch the mismatch.

D. Correctly Maintaining Branch Prediction State

Virtually all modern branch predictors use global or local

state to provide predictions. To speculate efficiently, this state

is updated speculatively using generated predictions, such

that next predictions can be retrieved using a consistent yet

speculative architectural state. Because the state is updated

speculatively, it has to be rolled back on mis-speculation.

This is usually achieved by checkpointing information prior

to speculatively updating the predictor state. At a high level,

each dynamic instruction is associated with a checkpoint ID

such that the correct checkpoint is restored when a given

instruction triggers a pipeline flush (e.g., AMD Zen [16]).

1) Decoupled Predictors State: With Elastic Fetching, it

is possible that instructions fetched in coupled mode do not

have a checkpoint ID associated with them as DCF may not

have generated the corresponding checkpoint yet. Thus, if

such an instruction triggers a pipeline flush, it would not

know to what state to restore in the DCF predictors. Generally

this may be addressed by waiting for the flush-triggering

instruction to reach the head of the Reorder Buffer (ROB),

guaranteeing that all the speculative state is younger and can

be thrown away.

However, delaying the flush until the instruction reaches the

head of the ROB can have a significant performance impact.

Thus, another possibility is to associate each instruction

fetched in coupled mode with a coupled checkpoint ID

that will be bound as FAQ blocks are consumed. To do

so, we can leverage the existing queue of checkpoints that

branch instructions claim when they are fetched. Specifically,

as branch instructions (more generally, all instructions that

require branch prediction state to be checkpointed) are fetched

in coupled mode, they obtain an entry in the checkpoint queue

as per the regular operation of the fetcher. In decoupled mode,

the entry payload would be populated using information

coming from the FAQ entry being processed. However, in

coupled mode, by construction, there might not be an FAQ

entry from where to get the information to checkpoint yet.

Therefore, we assume that the logic handling incoming FAQ

entries while in coupled mode has the ability to populate

the payload in the checkpoint queue at a later time as

needed, even though the entry is allocated as usual. This is

possible since the FAQ entry has knowledge about branch

location within the block of sequential instructions and is

carrying the information to be checkpointed (e.g., pointer to

Global History Register bit that was updated). This allows

instructions fetched in coupled mode to flush the pipeline as

soon as their checkpoint queue entry gets populated, rather
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Table I: Applications used in our evaluation.

Benchmark Suite Applications

SPEC2K6 INT/FP

astar, bzip, calculix, dealII, gamess, gcc, gobmk, gromacs,
h264ref, hmmer, leslie3d, namd, omnetpp, parser, perlbench,
povray, sjeng, soplex, sphinx3, tonto, wrf, xalancbmk, zeusmp

SPEC2K17

INT/FP Speed

perlbench, gcc, mcf, omnetpp, xalancbmk, x264, deepsjeng, leela,
exchange2, xz, bwaves, cactuBSSN, namd, parest, povray, lbm,
wrf, blender, cam4, pop2n, imagick, nab, fotonik3d, roms

Server 1 (Large
I-side footprint)

subtest 0, subtest 1, subtest 2

Server 2 (Large
D-side footprint)

subtest 0, subtest 1, subtest 2

than having to wait until they reach the head of the ROB.

2) Coupled Predictors State: While we do not consider

history-based predictors for the fetcher, the mere presence of

a Return Address Stack in the fetcher raises the question of

state checkpointing for the coupled predictor infrastructure.

Fortunately, the coupled RAS, by definition, has to be updated

even in decoupled mode. As a result, as long as both coupled

and decoupled RAS are matching, the coupled top of stack

pointer can be restored using the decoupled checkpoint

information. This also happens when a divergence is detected.

For more complex branch and target predictors, however,

checkpoints are typically stored in a queue that features

a head pointer and a tail pointer to prevent overwriting

checkpoints during speculation [16]. Therefore, to track

checkpointed state for such coupled predictors, we can

implement a dedicated queue. Entries are allocated in the

queue by instructions fetched in coupled mode as well as

instructions fetched in decoupled mode that need to update or

restore the coupled predictor state (e.g., conditional branches

to update the GHR). This allows an instruction fetched in

decoupled mode to restore the correct state in the coupled

predictors, even if younger instructions have been fetched in

coupled mode while the decoupled instruction was still in

the pipeline.

3) Coupled Predictors Updates: The goal of ELF is to

spend most of the cycles in decoupled mode as it is the better

performing mode. Moreover, it is likely that the coupled

predictors will be much simpler and much smaller than the

decoupled predictors. This raises the following question:

Should the coupled predictors be updated on all branches,

or only the branches fetched in coupled mode? Qualitatively,

it makes little sense to allocate entries for branches that will

never or very seldom be fetched in coupled mode, hence, this

is the approach we used in this paper. However, as pointed

out in the previous paragraph, the coupled RAS is updated

regardless of the current fetching mode.

E. Impact of I-Cache Hierarchy on U-ELF

Typically, decoupled fetching allows for implementing a

slower but pipelined instruction I-Cache. Indeed, since fetch

addresses are provided by the FAQ directly, it is possible to

fetch across taken branches in consecutive cycles, even if

the actual cache access latency is several cycles. Conversely,

with a coupled design, one has to wait for the instruction data

to come out of the data array to determine if there is a taken

branch at a specific location. In other words, every taken

branch incurs n bubbles with n being the cache latency, unless

a BTB is implemented in the fetcher specifically to cover the

I-Cache latency [7]. Slower caches are compelling as they

burn less power and have less stringent timing requirements.

In the context of ELF, and assuming the presence of such

a multi-cycle instruction cache, the taken branch penalty

can be observed in coupled mode when a taken branch is

encountered. Specifically, as the I-Cache latency increases,

the potential benefit of ELF will diminish since more and

more bubbles will be inserted in coupled mode. To overcome

this behavior, ELF requires that the regular fetcher feature a

structure that allows to – at least partially – hide the main

I-Cache latency on predicted taken branches. In our case,

this structure is an actual small but fast L0 instruction cache

(24KB, 3-way, 1-cycle latency). It is backed by the main

L1 instruction cache (64KB, 8-way, 3-cycle latency). This

maximizes the benefits of the coupled mode of ELF, and is

a viable design point as commercially available chips use

this design [12]. An alternative design could implement a

coupled BTB [7] or Next Line Predictor [7], [13].

Lastly, although not explored in this work, using a fast

L0 I-Cache renders several optimizations possible. First, as

pointed out in Section IV-C1, the coupled predictors we

considered are very simple. Combined with the fast L0I, this

could permit coupled mode to hide taken branch bubbles

by design as both L0I and predictors could be accessed in

less than a full cycle. Similarly, it would also be possible

to drive the L0I only in coupled mode, to benefit from the

quick instruction turnaround, while driving the L1I only in

decoupled mode to benefit from the power savings due to

the slower access.

F. Variable-length ISA

Elastic Instruction Fetching was devised within our organi-

zation in the context of designing high-performance ARMv8

CPU cores. As a result, it is especially well-suited to fixed-

length ISAs.

Adapting ELF to variable-length ISAs (e.g., x86) is

beyond the scope of this paper. Indeed, ELF is tightly

coupled with the fetcher machinery and ensuring correct

and efficient operation will depend on low-level details of

the microarchitecture that are generally not available.

Nonetheless, we believe that the main requirement is that

the conditional coupled predictor be designed such that all

branches fetched in a given cycle are predicted. This avoids

penalties caused by stalling or by assuming the branch as not

taken and mispredicting later. This may involve provisioning

many predictions per entry.

We note that these challenges may be addressed gracefully

through the presence of pre-decode bits4 (e.g., to identify

4Those bits may be stored in the I-Cache or computed on the fly.
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instruction boundaries, instruction types ..etc.) and a micro-op

cache [1].

V. EVALUATION FRAMEWORK

A. Methodology

Our proposal aims at increasing sequential performance.

Therefore, we focus on single-threaded workloads for our

evaluation. Specifically, we consider benchmarks from the

following benchmark suites: SPEC2K6 [17], SPEC2K17 [18].

We also use internally-developed, proprietary server-class

workloads that are used to drive the design of future

generation processors. We anonymized workloads’ names, but

we can describe them as follows: (server 1) is a transaction-

based server workload with a significant instruction footprint,

while the second suite (server 2) is a computation-intensive

kernel that pressures branch prediction and data-side memory.

Table I lists the workloads used. All binaries were compiled

using GCC 7.1 with -O3 except for server 2 (-O2). We use

100-million instruction simpoints [19].

Table II: Baseline pipeline configuration.

Frequency 3.4GHz

Branch Target

Buffer

16 insts. per entry, up to 2 taken branches and targets (if direct)
L0: 24-entry, fully associative, 0 cycle (output address can drive
input next cycle)
L1: 256-entry, 4-way assoc., 1 cycle
L2: 4K-entry, 8-way assoc., 3 cycle

Branch Prediction

Cond. Branch Pred.: state-of-art 32KB TAGE predictor (8 tagged
tables, 1 cycle)5[14]
Ind. Target Pred.: 0.6KB 64-entry L0 indirect target cache (direct-
mapped, 12 bit tags, 1 cycle) + 32KB ITTAGE predictor (4 tagged
tables, 3 cycles) [20]
0.25KB 32-entry return address stack.

FAQ 32-entry FIFO.

Instruction

Prefetch

On L0I idle cycles, prefetch using address from FAQ (older to
younger). Up to 4 prefetch requests in flight.

Memory
Hierarchy

L0I: 24KB, 3-way asso., 2-way set intlv., 1 cycle; 64B
L1I: 64KB, 8-way asso., 3-cycle, 64B
L1D: 32KB, 8-way asso., 3-cycle load-to-use, 64B
L2: unified, 512KB, 8-way asso., 13 cycles, 128B
L3: unified, 16MB, 16-way asso., 35 cycles, 128B
Memory: 250 cycles, Advanced Stride-based prefetch

TLB Perfect

BP1 to FE lat. 3 cycles (BP1, BP2, FAQ)

Fetch through

Rename Width
8 instrs per cycle

Issue through
Commit Width

9 instrs per cycle (4 ALU including 2MulDiv, 2 LD/ST, 2 SIMD,
1 StData)

ROB/IQ/
LSQ/PRF

256/128/128/256

BP1-EXE lat. 11 cycles

Memory

Disambiguation

PC-based filter: violating load-store pair is recorded in the table.
When load PC is renamed, load waits for older store if matching
store PC was fetched.

Coupled Branch

Prediction

2K-entry bimodal, 3-bit ctrs. (1 cycle) – 0.75KB
32-entry return address stack – 0.25KB
64-entry table, 12 bit tags, 1 cycle – 0.6KB

Divergence

Tracking

64-entry 2-bit (taken, branch) bitvector + 16-entry target buffer
for coupled information (144B) + 1 allocated bit per entry (10B).
64-entry 2-bit (taken, branch) bitvector + 16-entry target buffer
for decoupled information (144B) + 1 allocated bit per entry
(10B).

B. Evaluation Environment

The microarchitecture, presented in Sections III and IV,

is faithfully modeled in our industry-class, in-house, cycle-

level simulator. Since the model was correlated to RTL, the

speedups we report, although low, are not within the noise

of the simulator and are compelling enough to influence

design decisions. This simulator runs ARMv8 ISA binaries

in full-system mode and is used to drive the definition of

future generation processors.

The parameters of our baseline core aims to model an

aggressive out-of-order processor featuring a decoupled

fetcher.

Table II shows the baseline core configuration. We point

out that our DCF configuration features 3 levels of BTBs.

Level 0 can be accessed and its content processed in a

single cycle, such that if there is a taken branch, the target

PC can be used next cycle (i.e., no taken branch bubble).

However, this assumes that the direction/target prediction is

also available in the same cycle. Consequently, on an L0

BTB hit, only predictions from the bimodal component of

TAGE are used for conditional branches. We assume that if

the tagged components of TAGE disagree with the bimodal,

we are able to resteer BP1 in the next cycle, i.e., one bubble

is introduced (as if it had been an L1 BTB hit). Similarly,

on an L0 BTB hit, we assume that predictions from the

L0 indirect predictor (direct-mapped partially tagged Branch

Target Cache) and the RAS are generated fast enough to

hide the bubble. That is, a miss in the L0 table will cause

the full delay of the L1 (ITTAGE) access to be visible.

Table II also reports the size of the ELF structures we

considered. The total storage cost of U-ELF is smaller than

2KB as the coupled predictors are very small compared to

the decoupled ones, to minimize area overhead. Remaining

additional logic includes the comparators used to compare

bitvectors (128 bit comparisons) and target queues (16 virtual

addresses comparisons).

VI. RESULTS AND ANALYSIS

A. The Potentially Detrimental Impact of Decoupled Fetching

We begin our experiments with a comparison between the

baseline detailed in Table II (DCF) and a similar pipeline

without a decoupled fetcher(NoDCF). Note that the pipeline

without DCF does not have any dedicated mechanism to hide

the taken branch bubble, yet it still outperforms DCF in a few

select cases. This highlights that DCF’s ability to hide taken

branch bubbles can be vastly outweighed by the additional

latency on mispredictions and the BTB misses. Recall that

in our framework, DCF may increase performance in two

distinct ways:

1) via instruction prefetching using addresses queued in

the FAQ.

2) by allowing the taken branch bubble to be hidden

thanks to queuing effect in the FAQ as well as the

presence of a small L0 BTB. This includes allowing

5Predictor access may span more than a single cycle as long as the next
PC can be generated during BP2 using the predictions from the access that
started in BP1.
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Figure 6: Performance of No Decoupled Fetcher (NoDCF)

relative to baseline DCF for workloads that benefit from

ELF.

the fetcher to fetch across a taken branch in a given

cycle if the branch and the target map to the two

different set interleaves of the L0I-Cache and if the

FAQ has the block of the target available [21].

Figure 6 shows the performance and branch direction

mispredictions per kilo instruction (MPKI) for benchmarks

that benefit from ELastic Fetching. As previously stated, in

some cases, performance is better without DCF. The reasons

for this trend are that:

1) The pipeline flush penalty is increased by 3 cycles.

2) DCF adds a new feedback loop spanning from Decode

to BP1, whose latency is observed on misfetches (BTB

misses/BTB stale).

3) DCF introduces the concept of non taken branch bubble.

That is, a BTB entry may end before 16 instructions

because it ran out of space to store branch information.

If this happens while missing in the L0BTB but hitting

in the L1BTB, speculatively accessing the L1BTB with

PC + max insts at the beginning of the next cycle will

be incorrect, and BP2 will have to resteer BP1, even

in the absence of a taken branch.

In general, workloads for which performance degrades

with DCF (primary y-axis greater than 1 in Figure 6) feature

a reasonably high branch MPKI, which is one of the two

features that ELF aims to mitigate. One especially interesting

data point is server 2 (subtest 3), which has the highest

branch MPKI yet sees a limited slowdown with DCF. The

reason is that this workload is in fact a graph processing

workload with a huge memory footprint (several GBs). As a

result, while DCF is detrimental due to the high number of

branch mispredictions, the main bottleneck is in fact in the

memory system.

The second main cause of degradation, BTB misses, is

only significant in server 1 (28.3%, 48.5% and 70.6% hit

rate for L0/L1/L2BTB in subtest 1). This is expected as
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Figure 7: Performance improvement of L-ELF and different

variants of U-ELF with respect to DCF.

server 1 was specifically considered in this study for its very

large instruction footprint. Said footprint is also the reason

why DCF is able to improve performance by 40% as a result

of issuing I-side prefetches through the FAQ.

B. Different Flavors of ELF

In this section, we report results for L-ELF and and the 3

first U-ELF variants discussed in Section IV. Figure 7 shows

the relative IPC of those variants normalized to the baseline.

Note that for IND-ELF, speculation past an indirect branch

is only allowed if the branch hits the Branch Target Cache.

If not, coupled mode stalls as in L-ELF. In that context,

IND-ELF is not able to provide significant improvement over

L-ELF, except in 458.sjeng (1.5% vs 1.1% speedup).

In COND-ELF, to minimize adversarial effects due to

wrong path instructions (e.g., useless cache accesses causing

useful lines to be evicted), speculation past a conditional

branch is only allowed if the 3-bit bimodal counter of the

coupled predictor is saturated. We note that even with this

optimization, performance degrades in 620.omnetpp due to

the bimodal prediction often being incorrect (+2 MPKI).

This calls for a smarter filtering mechanism for allowing

speculation past conditional branches, or simply for a better

coupled predictor area/power resources permit it.

Finally, RET-ELF shows significant improvement in

Server 2 (Subtest 2) as the RAS is very accurate and this

particular workload relies on recursion. As a result, even

though limited, being allowed to speculate past returns

only is particularly interesting in very specific cases. In

433.milc, however, we can observe a 1% slowdown, which is

attributable to a single simpoint in which speculating across

returns while in coupled mode creates a pathological case for

the memory dependency predictor. This triples the number of

pipeline flushes due to RAW hazard violations (27K to 95K).

We observed a similar behavior for server 1 (subtest 1) in

U-ELF.
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Figure 8: Performance improvement of L-ELF and U-ELF,

as well as average number of instructions fetched during a

run in coupled mode.

C. Unlimited ELF

Finally, we consider the final variant of ELF where all types

of predictors are enabled (bimodal, RAS and indirect table),

U-ELF. Figure 8 summarizes speedup over the baseline DCF

configuration for L-ELF and U-ELF, and also reports the

average number of instructions fetched from the time coupled

mode starts until the fetcher switches back to decoupled

mode.

In general, as more instructions are fetched in coupled

mode, more latency is hidden and performance increases. In

particular, performance improves by up to 3.6% and 5.2% in

641.leela for L-ELF and U-ELF, respectively. Interestingly,

the speedup of U-ELF in server 1 (subtest 1) remains modest

(2.2%) even though this workload is often missing the 3 levels

of BTB. The reason is that although ELF is theoretically able

to hide the BTB miss penalty, a BTB miss often entails an

instruction cache miss. In that event, the benefit of ELF comes

from issuing the request to the L1I/L2 Cache earlier rather

than from actually fetching instructions. Fully hiding the

BTB miss penalty could be achieved through a mechanism

such as Boomerang [11].

It seems like in order to extract more performance from

ELF, better coupled predictors and/or better confidence

mechanisms are needed. Indeed, if we consider Server 2

(Subtest 2), we can observe that the speedup with U-

ELF is 3.7%. However, with RET-ELF, speedup was 4.8%.

The reason is that in this benchmark, while the coupled

bimodal branch predictor is actually quite accurate (+0.1

MPKI), incorrect coupled predictions are sufficient to displace

useful data from the L1D on the wrong path. Similarly, in

620.omnetpp, L-ELF performs better than U-ELF by virtue

of the bimodal predictor being inaccurate (+2 MPKI).

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

2K17 FP 2K17 INT 2K6 FP 2K6 INT Server_1 Server_2 Geoman

R
E
LA

T
IV

E
 IP

C

Gmean of IPC relative to DCF

NoDCF L-ELF U-ELF

+0.1% +1.5% +0.5% +1.3% +1.1%
+2.8%

+1.2%

Figure 9: Speedup (geomean) of NoDCF, L-ELF, U-ELF

relative to the baseline DCF configuration.

Nonetheless, with ELF, significant improvements can

be obtained over a baseline with DCF. Moreover, despite

the limited numbers of workloads strongly benefiting from

ELastic Fetching, this new microarchitectural technique

slightly improves performance on average for our benchmark

suites, as shown in Figure 9.

VII. CONCLUSION

In this work, we proposed ELastic Fetching, a fetch

mechanism that leverages a decoupled fetcher to implement

well-known fetch optimizations (e.g., instruction prefetching),

but that falls back to a more conservative coupled scheme

when the pipeline is restarted, on a flush. This allows to hide

part or all of the additional latency incurred by the DCF

stages (3 stages, in our framework) as well as part of the

penalty caused by BTB misses.

We detailed two different variants of ELF. First, Limited

ELF, a low complexity design that only fetches sequential

instructions in coupled mode, but yields moderate improve-

ments, up to 3.6% (0.7% geomean).

We also presented results for different trade offs regarding

what type of control decision L-ELF is able to speculate

past, and found that in general, speculating past conditional

branches (COND-ELF) yields the most benefits. However,

given the predictor (3-bit bimodal) and the filtering mech-

anism (counter has to be saturated) we used, COND-ELF

is also a riskier scheme as it may decrease performance in

workloads sensitive to wrong-path effects such as spurious

data cache accesses. As a result, future work may investigate

the use of a better conditional predictor and/or filtering

scheme to further improve COND-ELF and specifically

ensure that performance does not decrease. The other variant,

RET-ELF and IND-ELF, generally show less improvement
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even though short recursive algorithms benefit significantly

from RET-ELF.

Finally, we evaluated a more complex scheme, Unlimited

ELF, that will allow coupled mode to fetch past any control-

flow decisions, effectively combining COND-, IND- and RET-

ELF. U-ELF yields substantial improvements in workloads

that generally feature high branch MPKI, up to 5.2% (1.2%

geomean). Therefore, as IPC is becoming more and more

critical to new microarchitectures due to the end of Dennard

Scaling and the slowdown of VLSI scaling, we consider ELF

to be a worthy tool to add to the microarchitect’s toolbox.
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